
11. NUMERICAL TECHNIQUES 

Abstract — To establish a large scale magnetic field analysis, 

we have already proposed a magnetic field analysis using voxel 

modelling with nonconforming technique. The accuracy of flux 

densities and forces obtained from the nonconforming voxel 

modelling was verified in a 3D eddy current model as well as in 

a 2D nonlinear IPM motor model. In this paper, to make the 

proposed method more applicable large scale analysis method, 

the nested geometric multigrid method is introduced. The 

developed method is applied to a simple 2D model. It is shown 

that the convergence characteristic of magnetic field analysis 

with nonconforming mesh can be much improved by the 

multigrid method. 

I. INTRODUCTION 

Recently, a large scale magnetic field analysis can be 

carried out with the progress of computer technologies and 

numerical techniques, such as a parallel computing [1] and 

the multigrid method [2], [3], etc. However, it does not 

seem to have been established for an actual electrical 

machine with complex geometry for some reasons. For 

example, the CPU time for an automatic mesh generation 

increases as the number of elements increases. Moreover, in 

the multigrid method, the number of iterations increases 

drastically when the elements have distorted shape. To 

overcome these problems, the voxel modelling [4], in which 

the analyzed region is subdivided into square or cube 

elements uniformly, seems to be attractive because it 

provides us with easier mesh generation and better mesh 

quality without distortion. However, only few examples of 

the voxel modelling in magnetic field analysis, in which 

high accuracy is required, have been reported because error 

occurs due to rough shape approximation. If a large scale 

analysis is introduced to the voxel modelling, the error due 

to the shape approximation can be reduced because the size 

of elements can be small enough. Therefore, the large scale 

analysis using the voxel modelling seems attractive as the 

next generation of the magnetic field analysis. We have 

already proposed the method of magnetic field analysis 

using the voxel modelling with nonconforming technique 

[5], which can reduce the number of elements. Moreover, 

the effectiveness of the proposed method was shown. The 

accuracy of flux densities and forces obtained from the 

nonconforming voxel modelling was demonstrated in a 3D 

eddy current model as well as in a 2D nonlinear IPM motor 

model. 

In this paper, to make the proposed method more 

applicable large scale magnetic field analysis, the nested 

geometric multigrid method is introduced. To investigate 

the convergence characteristics of magnetic field analysis 

using nonconforming voxel modelling, the developed 

method is applied to a simple 2D model.  

II. METHOD OF ANALYSIS 

In this section, the magnetic field analysis with the 

nonconforming voxel modelling using the multigrid method 

is illustrated using a simple 2D model. 

A. Analysis Model 

Fig. 1 shows a simple 2D linear magnetostatic analysis 

model of magnetic cylinders (relative permeability µr = 

1000). Only a quarter region is analyzed due to symmetry. 

Two cylinders both with the radius of 10mm are placed on 

two sides of the y axis symmetrically with the distance of 30 

mm between each other. When the uniform flux density Bxo 

= 1T is applied to the cylinders in x direction, the flux 

distribution is calculated.  
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Fig. 1. A simple 2D model of cylinders (a quarter region). 

 

B. Fundamental Equation 

The 2D magnetic field analysis is carried out by using the 

1st - order square finite element method with the magnetic 

vector potential A. The fundamental equation is as follows: 

0)rot(rot =Aν             (1) 

where ν is the reluctivity. 

C. Voxel Modelling With Nonconforming Technique 

In the voxel modelling, the analyzed region is subdivided 

into square elements uniformly. In this modelling, to reduce 

the outline approximation error of the analysis model, a 

huge number of elements is required. Therefore, to reduce 

the number of elements, the nonconforming technique [6] is 

applied to the voxel modelling. Fig. 2 shows the meshes of 

the nonconforming voxel modelling generated by the 

quadtree method [7], in which two rules are satisfied. One is 

that the regions including the geometric outlines are refined. 

The other is that the ratio of the large size to the small size 

in two neighboring elements is not larger than two. The 
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number of unknown is 695 in the coarse mesh and it is 

1,373 in the fine mesh.  

In the analysis with nonconforming mesh, the potential 

on the nonconforming node at the center of the edge of the 

large element is interpolated linearly by the potentials on 

nodes at both side of the edge [6]. The flux distribution with 

the fine nonconforming voxel mesh is shown in Fig. 3. An 

appropriate result is obtained. 
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Fig. 2. Nonconforming voxel meshes of the magnetic cylinder,  

(a) coarse mesh, (b) fine mesh. 
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Fig. 3. Flux distribution. 

 

D. Multigrid Method 

The multigrid method, which is a numerical technique for 

large scale analysis, is introduced to the nonconforming 

voxel modelling. When the mesh generation technique 

mentioned above is used, the nested geometric multigrid 

method using the coarse and fine meshes, for example, 

shown in Fig. 2 (a) and (b) can be applied easily because 

every node in the coarse mesh is included in the nodes of 

the fine mesh. In this paper, the two-grid, such as the coarse 

and fine meshes show in Fig. 2, V-cycle of multigrid 

method is used. The Jacobi method is chosen for the solver 

of linear equations for both smoothing and residual 

equations because the analysis system can be easily 

parallelized in this case. The ordinary matrixes are used for 

the prolongation and restriction matrixes. 

III. NUMERICAL RESULTS 

The convergence characteristics of magnetic field 

analysis with the nonconforming voxel modelling using the 

multigrid method is investigated by using the double meshes 

shown in Fig. 2 (a) and (b). For reference, the analysis using 

the normal Jacobi method without the smoothing with the 

fine mesh only is also carried out. Fig. 4 shows the residual 

norm R versus number of iteration I. The residual norm of 

the multigrid method decreases rapidly compared with that 

of the normal Jacobi method. The total iterations until 

convergence with and without multigrid method are 5,219 

and 19,298, respectively. Therefore, it is shown that the 

multigrid method is effective for the nonconforming voxel 

modelling.  
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Fig. 4.   Convergence characteristics of the multigrid method  

and the normal Jacobi method. 
 

IV. CONCLUSION 

The multigrid method is introduced to the magnetic field 

analysis using the nonconforming voxel modelling. It is 

shown that the multigrid method is effective for the 

nonconforming voxel modelling.  

The investigation on the 3D analysis will be reported in 

the full paper.  
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